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Abstract. Modern Reinforcement Learning (RL) algorithms are able to
outperform humans in a wide variety of tasks. Multi-agent reinforcement
learning (MARL) settings present additional challenges, and successful
cooperation in mixed-motive groups of agents depends on a delicate bal-
ancing act between individual and group objectives. Social conventions
and norms, often inspired by human institutions, are used as tools for
striking this balance.

We examine a fundamental, well-studied social convention that underlies
cooperation in animal and human societies: dominance hierarchies.

We adapt the ethological theory of dominance hierarchies to artificial
agents, borrowing the established terminology and definitions with as few
amendments as possible. We demonstrate that populations of RL agents,
operating without explicit programming or intrinsic rewards, can invent,
learn, enforce, and transmit a dominance hierarchy to new populations.
The dominance hierarchies that emerge have a similar structure to those
studied in chickens, mice, fish, and other species.

Keywords: Multi-Agent Reinforcement Learning - Reinforcement Learn-
ing - Cultural Evolution - Multi-Agent Systems - Cooperative Al

1 Introduction

Many animal species are able to collaborate, form groups and harness collective
intelligence [IT), 23]. Among those species, humans have achieved a scale and
sophistication of collaboration that stands as one of the most profound and un-
paralleled phenomena on Earth. The grand feats of humanity were accomplished
by groups of humans working together; what is grander is that these groups are
composed of individuals with wildly different beliefs, motivations, and talents
[59]. While differences between individuals provide an important source of di-
versity, they also lead to adversity and conflict, which can result in the violent
demise of the social group [63]. Those human civilizations that tempered their
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internal conflicts while capitalizing on the diversity were the ones to survive and
flourish [4, [5]. The intricate social structures that make up these civilizations
turn a potential runaway explosion into a controlled reaction, enabling groups of
humans to achieve breakthroughs that exceed the combined capabilities of their
individual members [39].

Multi-agent reinforcement learning (MARL) presents an opportunity to im-
plement simplified versions of those intricate social structures, where the envi-
ronment is closed and controlled, and humans are replaced by artificial agents.
Research in the paradigm of Cooperative AI [12] 411 [56] highlights the role of
such social structures (also labeled institutions) in producing human-aligned Al
systems. Existing research into reproducing such institutions for use in MARL
settings includes language [38], voting systems [62], reputation systems [42], and
bargaining [30].

In this paper we turn our attention to a primordial institution that underlies
cooperation in both animal and human societies: dominance hierarchies.

Our contribution: We adapt the ethological theory of dominance hierar-
chies to artificial agents by modeling conflicts between each pair of individuals
as the classic game of Chicken [44]. We generalize the game of Chicken into an
N-player stochastic game that we call Chicken Coop. We borrow the established
terminology and definitions from animal study to allow calculating dominance
metrics from agents’ action history. We release the Chicken Coop environment
under the MIT open-source licenseﬂ We train RL agents on the Chicken Coop
environment to optimize their score, observing the emergence of three behaviors:

1. Agents collaboratively invent dominance hierarchies.
2. Agents enforce dominance hierarchies on other agents.
3. Agents transmit dominance hierarchies to new populations.

We show a causal link between the agents’ ability to identify the opposing
agent and the emergence of dominance hierarchies. We compare the attributes of
dominance hierarchies that emerge to empirical results from groups of different
animals, showing structural similarities.

By providing MARL systems with the ability to coordinate their collective
behavior via dominance hierarchies, we hope to enable a more seamless integra-
tion into existing human systems [45].

2 Background

When animals live together in a social group they often find themselves in con-
flicts with other members of the group over resources such as food or mating
partners. These conflicts can lead to physical injury and death. A dominance
relationship [43] is a pattern in the conflicts between a pair of individuals, in
which the dominant individual is more likely to escalate violence and win the
majority of resources, and the subordinate individual is more likely to deescalate

5 The code and its manual are available at |https://github.com/cool-RR /chicken-coop
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and yield any contested resources. This dynamic prevents the runaway escalation
of violence that could otherwise lead to injury and a loss of group cohesion [50].

A dominance hierarchy, also known as a pecking order, is the aggregate of
all the dominance relationships between each pair of agents in the group. It is
defined by modelling dominance relationships as a total relation on the set of
agents, where d — s means that individual d is dominant over individual s. A
dominance hierarchy is modelled as a complete, directed graph (tournament)
where agents are represented as nodes and dominance relationships are repre-
sented as directed edges [29]. This graph representation is more than just a map
of agonistic behavior in the group; any skirmish between individuals a and b
affects not only the edge connecting a and b, but the edges connecting either
a or b with each of the other individuals in the group, by the mechanisms of
winner effects [1], loser effects [18] and bystander effects [19].

The field of dominance hierarchies traces its roots to Schjelderup-Ebbe [4§],
which described pecking orders in captive chicken societies. Over the past cen-
tury, dominance hierarchies have been studied across a wide range of animal
species including canines [3, 20], birds [57], fish [I3] and humans [I0, 24} [37], un-
covering commonalities in the structure and function of dominance hierarchies
across taxa [§]. The study of dominance hierarchies continues to be a field of
active research [51].

3 Related Work

MAS models have been used for the modelling of dominance hierarchies in an-
imals [22] and in humans [40]. DomWorld [27] is a multi-agent environment
developed to study the self-organization of social behavior and dominance hi-
erarchies in primate groups. DomWorld is not modelled as a stochastic game
or any other game theoretic construct, as the agents have no concept of a re-
ward signal. Leimar [32] provides a proper MARL environment called SocDom,
equipping the agents with an RL algorithm [52], albeit without neural network
estimators. While the SocDom experiments show similar results to ours, the foci
of the two environments differ: SocDom, like DomWorld, attempts to tailor the
agents’ behaviors to faithfully reproduce the dominance behavior seen in real
animal societies. In contrast, our research is directed at boiling the mechanics
of dominance hierarchies down to the simplest possible set of premises, showing
that they emerge even when using an off-the-shelf RL algorithm.

The use of dominance hierarchies for improving the performance of artificial
agents was proposed in Hemelrijk [26], and in Tomlinson et al. [53], which sug-
gested that dominance hierarchies could streamline negotiation, enable agents
to form beneficial alliances, and make interfaces more intuitive. Bakker et al. [2]
employs a group of RL agents with a graph structure, which bears resemblance
to a dominance hierarchy, besides being explicitly defined rather than emergent.
Aroca-Ouellette et al. [I] demonstrates an explicit hierarchy where some agents
have a different set of actions than others.
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Vezhnevets et al. [55] and Wu et al. [60] replace the RL algorithms used
by the agents with large language models (LLMs), which have gained immense
popularity due to their robustness in solving a wide variety of problems [61].
These LLM-based agents are organized in human-inspired hierarchies such as
manager-workers and student-assistant-expert. The back-and-forth interaction
between multiple LLM agents is effective at encouraging diversity [35], factuality,
and reasoning capability [I6], when compared to the use of a single LLM-based
agent. The potential usefulness of such agents is tremendous, as LLMs can be
seamlessly integrated with multimodal foundation models [33], allowing them to
process and generate textual, visual and auditory content. We suggest that a
formal understanding and terminology of agent hierarchies could play a decisive
role in maximizing the effectiveness of these agents.

4 Definitions

4.1 Dominance between two agents

Dominance hierarchies are a group phenomenon comprised of multiple domi-
nance relationships, one between each pair of agents in the group. In this section
we consider only those pairwise interactions; we define dominance relationships,
the metrics of aggressiveness and rapport, the roles of dominant and subordinate,
and the environment in which these occur.

Animals use dominance relationships to decide which individual will have
access to an exclusive resource, such as food, a mating partner, or grooming by
other individuals [28]. We model the environment that enables these interactions
between agent i and agent j as a partially-observable stochastic game (POSG)
[25] which has exactly two stable Nash equilibria NE; and N E; such that agent
i’s reward at NF; is bigger than its reward at NEj;, and agent j’s reward at
NEj is bigger than its reward at N FE;.

We denote the actions that comprise NE; as alyp, and agv B

Intuitively, a dominance relationship between two agents is the tendency of
those agents to play the joint action of either NE; or NE;, but not both. Simi-
larly to Leibo et al. [31], we define an agent’s aggressiveness by how frequently
it chooses the action that reduces the other agent’s reward:

Definition 1 (Aggressiveness).
Given an agent i and a set of timesteps T, the agent’s aggressiveness g? 1
the portion of timesteps in which it played a'yp. .

Definition 2 (Dominance relationship, dominant, subordinate). Given
two agents i and j and a set of timesteps T in which they played with each other,
if the difference between agent i’s aggressiveness and agent j’s aggressiveness
is above a certain threshold, we say that the two agents are in a dominance
relationship (DR), with agent i being dominant and agent j being subordinate:

i—j iff gi—g;, >n ne(0,1]
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In order to determine the existence of a dominance relationship between two
agents without assuming its polarity, we introduce a metric we call rapport:

Definition 3 (Rapport).
For two agents i and j and timesteps T, we define the rapport i)‘{% as:

T T T
%i,j =|g; — 9

A rapport Rj; > 7 indicates either i — j or i ¢ j.

In the classic game of Chicken [44], each of the two agents plays either hawk
or dove. An agent gets the most reward if it plays hawk while its partner plays
dove; however, if both agents play hawk, they both get the lowest reward.

Definition 4 (The game of Chicken). The game of Chicken is defined as a
normal-form game:

Agent 2
Agent 1 Dove| Hawk
Dove R,R| S, T
Hawk 7,5 | PP

The reward constants satisfy T > R > S > P. The (S,T) and (T,S) outcomes
serve as the Nash equilibria N E; and NEj; . Each agent’s aggressiveness is simply
its tendency to play hawk.

4.2 Dominance hierarchies

To model dominance relationships within an agent population, we generalize the
game of Chicken to support more than two players:

Definition 5 (Chicken Coop). Chicken Coop is an N-player generalization
of the game of Chicken. In each episode of Chicken Coop, the agents are divided
into random pairs that are used for the entire episode. Fach pair of agents plays
one round of Chicken against each other, choosing either hawk or dove and
receiwing a reward in {T, R, S, P}. Fach agent’s sole observation is the identity
of their opponent.

We extend the definitions in from the Chicken game to the
Chicken Coop game. For example, for each pair of agents ¢ and j in the popu-
lation, we determine the existence and polarity of their dominance relationship
(¢ = j or i + j) by evaluating the aggressiveness metrics g}r and g}r on the
subset of T in which these two agents were randomly paired with each other.
Finally, we aggregate these dominance relationships into a graph:

Definition 6 (Dominance hierarchy).

A dominance hierarchy H is a complete, directed graph (tournament) where
agents are represented as nodes and dominance relationships are represented as
directed edges.
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5 Methods

In all of the experiments below, unless stated otherwise, the RL agents are
trained using the PPO algorithm [49] implementation provided by the RLIlib
framework [34]. We train L = 300 populations of N = 6 Chicken Coop agents,
at a learning rate of 2 x 1076, a discount factor of v = 0.99, and a clipping
parameter of € = 0.3. We use a dominance threshold of n = 0.55 and these
reward constants: R =0, S=-2, T=5P=-10.

Each agent has its own neural network with its own set of weights, which are
separate from those of the other agents. Crucially, all of the agents in a given
population are trained exclusively with the other agents in that population;
we don’t allow cross-population training, because we would like to allow each
population to develop its own distinct dominance hierarchy.

Each generation is comprised of 512 episodes. After each generation, the
policies update according to the actions and rewards in that generation.

6 Results

6.1 Emergence of dominance hierarchies

1.0
0.8
0.6
0.4
0.2

0.0

Aggressiveness

0 20 40 60 80 100 0 . 20 40 60 80 100
Generation

Fig. 1. Aggressiveness levels of each of the six agents (depicted as differently-colored
lines) in four sample Chicken Coop populations.

We measure the aggressiveness of each agent in each population, aggregated
interactions with each of the other agents. In we plot the aggressiveness
of six agents in four sample populations. A few features can be visually discerned:
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Fig. 2. Minimum rapport between each pair of the six agents in four sample Chicken
Coop populations.

1. The agents’ aggressiveness values converge to approximately equally-spaced
“ranks” in [0, 1].

2. Despite of this strong convergence, the mapping between agents and ranks
appears completely arbitrary across the four sample populations.

3. In some populations, the mapping between agents and ranks is a bijection,
while in other populations, multiple agents converge to the same rank, leav-
ing other ranks empty.

We offer the following explanation for these observations: when agent i’s
aggressiveness approaches k/N, agent 4 is playing a high proportion of hawk
towards k other agents, which in turn play a high proportion of dove towards
agent i. Each of these k agents contributes 1/N to agent i’s aggressiveness.
According to agent i is dominating these k agents. The remaining
N — k — 1 agents dominate agent i. We verify this explanation by measuring
the minimum rapport between each pair of agents for each of the four sample
populations, observing that each agent develops a dominance relationship with
each of the other agents in its population. (Figure 2})

We aggregate these dominance relationships into dominance hierarchies, show-
ing the results for our four sample populations in We observe that
some of the dominance hierarchies form a perfect line, while others contain cy-
cles. This distinction has been studied in animal societies. The former are called
linear dominance hierarchies or transitive dominance hierarchies. The latter are
called nonlinear dominance hierarchies, near-linear dominance hierarchies or in-
transitive dominance hierarchies [0, [14} [I5] [47]. In linear dominance hierarchies,
the agents may be assigned ranks {0,1,2,..., N — 1} with rank 0 representing
the agent that dominates all other agents, rank 1 representing the agent that
dominates all other agents except that in rank 0, etc.
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Fig. 3. Dominance hierarchies of four sample Chicken Coop populations, visualized in
condensed form. “—” represents a dominance relationship. “=” means that all agents
to the left of the double arrow dominate all of the agents to its right.

One profound property of the agents’ learned behavior is its idiosyncraticity:
(1) it converges to a stable dominance hierarchy, and (2) this hierarchy is not a
single one, but rather varies between different trials. Our 300 populations con-
verged to a total of 248 different dominance hierarchies (out of QW =21
possible permutations). Most dominance hierarchies appeared in only one popu-
lation, while the most common dominance hierarchies appeared in 3 populations.
Despite the arbitrariness of that choice, each population converges strongly to
its chosen dominance hierarchy.

6.2 Comparison to animal behavior

In we visually compare our aggressiveness results to empirical data
from groups of actual chickens. In Chase et al. [8], 14 captive populations of
4 white Leghorn hens each were observed for aggressive behavior for two con-
secutive days. While there are considerable differences in the methodologies of
that experiment and our study, the property of idiosyncraticity holds true in
both of them. In both environments, the agents tend to maintain their position,
regardless of how high or low it is in the hierarchy.

We visually compare the occurrence of intransitive components between Chicken
Coop populations and mice populations, shown in[Figure 5| In Williamson et al.
[68], 20 captive populations of 12 male CD-1 mice each were observed for ag-
gressive behavior for 22 days. We compare these results to those from L = 30
populations of N = 12 Chicken Coop agents. In order to find the maximum
similarity between the natural and artificial populations, we use a learning rate
of 3 x 107°. We make this comparison by using a metric we define here as rank
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Fig. 4. Left: Mean aggressiveness levels of four Leghorn chickens in fourteen captive
populations [8]. Right: Mean aggressiveness levels of six Chicken Coop agents across
300 populations, filtered to include only those that developed a linear dominance hier-
archy. In both plots, the results are averaged using the agents’ ranks as their identity.

linearity, which expresses how likely each dominance rank is to be occupied by a
single agent, rather than a K-way tie. For a single population, we can describe
rank linearity as a boolean; for example, in the third population from the top
in ranks {0,4, 5} are linear, while ranks {1, 2,3} are non-linear as they
are part of a 3-way tie between agents 1, 3 and 5. For a set of populations, we
define rank linearity as a number in [0, 1] which is the probability of a rank being
linear in a sample population.

1.0 Male CD-1 mice
= Chicken Coop agents
0.8
2
I
3 0.6
£
Z£0.4
©
o
0.2
0.0
0 1 2 3 4 5 6 7 8 9 10 11
Rank

Fig. 5. The rank linearities of 12 different ranks, in both Chicken Coop agents (purple)
and male CD-1 mice (orange)[58]. In both experiments, the top and bottom ranks were
the least likely to be occupied by an intransitive component.

6.3 Observation ablation

Here we show a causal relationship between agents’ ability to identify their op-
ponents and their tendency to form dominance hierarchies. In the Chicken Coop
environment, agents observe the identity of their opponent as an index number
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0 <i< N —1. We add random noise to the agents’ observation, up to and
including its complete obfuscation, and measure the rapport in the population.
Methodology: We define an agent’s opponent perception accuracy (OPA)
as a number in [0,1]. For each agent in each episode, the probability that its
observation of its opponent is replaced with a random value is (1 — OPA). For
each OPA value in {0,0.1,...,1} we train L = 10 different populations of N = 6
Chicken Coop agents at a learning rate of 2 x 10~% and measure their rapport.
In[Figure 6] we show a positive correlation between the agents’ OPA and their
rapport, and by extension, their tendency to form dominance hierarchies.
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Fig. 6. The gradual rise of rapport in Chicken Coop populations, differentiated by
how accurately the agents identify their opponents. The bluer lines represent bigger
amounts of random noise added to the agents’ observation signal.

6.4 Transmitting dominance hierarchies to new populations

In previous sections we regarded Chicken Coop agents as the focal objects of
study, while we considered the dominance hierarchies that they form as a pattern
in their behavior. We now propose flipping this perspective on its head: We
consider dominance hierarchies as the focal object while the agents are used as
vessels that communicate the dominance hierarchy that they learned to a new
population, promoting a cultural evolution paradigm in artificial intelligence [6].
This transmission of dominance hierarchies to new populations is made pos-
sible by two properties of dominance hierarchies: (1) the knowledge of each
dominance hierarchy is replicated over all the agents that participate in it, and
(2) each agent learns to consistently play hawk with all its subordinates, and
this tendency serves as a punishing mechanism. Any errant attempt by a subor-
dinate to play hawk against a dominant would usually result in a hawk/hawk
outcome, with both agents receiving the lowest possible reward of P.
Methodology: We train L = 10 different populations of N = 6 Chicken
Coop agents until they converge to dominance hierarchies. We call these expe-
rienced populations. For each of these L populations, we perform the following
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procedure M = 30 times: for each K € {0,1,2,..., N — 2} we choose a random
sample of K of those agents to be our ezperienced agents. We transplant the K
experienced agents into a new population with N — K naive agents [17] that
have not been trained. Finally, we train the naive agents in the heterogeneous
population at a learning rate of 2 x 10~ and observe their dominance behavior.

To measure how close each new dominance hierarchy is to its original dom-
inance hierarchy, we define a restricted dominance hierarchy distance (RDHD).
The restricted distance between two dominance hierarchies is the portion of
dominance relationships, limited to those between two naive agents, that have
the same polarity in both dominance hierarchies, satisfying 0 < RDHD < 1. We
define the dominance hierarchy transmission fidelity (DHTF) as (1 — RDHD).
Intuitively, DHTF is a measure of how effectively the experienced agents passed
their dominance hierarchy on to the naive population.

=)
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o

o
N
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Dominance hierarchy transmission fidelidy

0 1 2 3 4
Number of experienced agents

Fig.7. The DHTF of 300 different groups of experienced agents transplanted into
300 different naive populations. Higher values mean that the naive agents learned a
dominance hierarchy similar to the one in the original experienced population. Circles
indicate median DHTF while boxes indicate the two middle quartiles.

In we show the distribution of the DHTFs for different values of K.
A mere K = 2 experienced agents are able to teach 4 naive agents their original
dominance hierarchy with 80% median fidelity.

7 Discussion and future work

This paper investigates dominance hierarchies in the context of MARL. It first
provides a formal definition and a game-theoretical representation of dominance
hierarchies. It then introduces the phenomenon of dominance hierarchies in a
simplified form using the Chicken Coop environment, stripping away many of
the complexities found in biological life. Finally, it demonstrates how populations
of RL agents can invent, learn, enforce, and transmit dominance hierarchies.
Preliminary experiments with higher learning rates result in unstable domi-
nance hierarchies, where agents seem to converge strongly to a certain rank for
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some number of generations, only to deviate from it and converge to a different
rank. This is another unique behavior that exists in natural environments, where
it is known as rank change [46l [51] or dynamic stability [8].

We suggest several extensions to the Chicken Coop environment:

Multiple Hierarchies: In the Chicken Coop environment, all the agents
participate in one dominance hierarchy that includes all of the agents. In animal
and human societies, individuals participate in multiple dominance hierarchies
for multiple groups of other individuals, holding different ranks in each one.

Societies with Mixed Incentives: In this environment, the agents are
fully dedicated to making decisions on how aggressive they’ll be to other agents.
In animal and human societies, individuals in a group cooperate towards shared
goals in addition to their internal dominance struggles.

Opponent Shaping (OS): Algorithms such as LOLA [2I] and M-FOS [36]
enable agents to take the learning process of the other agents into account in their
own policy gradients. When applied to an environment that supports dominance
hierarchies, they may promote second-order dominance-seeking strategies, e.g.,
they may prompt agent ¢ to consider how it can behave as to encourage agent j
to place agent ¢ at a high rank in the dominance hierarchy.

We propose that the study of dominance hierarchies between RL agents may
be combined with research on large language models (LLMs) and multimodal
foundation models (MFMSs), which have gained immense popularity due to their
robustness in solving a wide variety of problems [33] [61]. Tufano et al. [54]
presents an innovative way to use LLMs: instead of sending queries to a single
LLM, users converse with a group of LLM-based agents, organized in human-
inspired hierarchies such as manager-workers and assistant-expert. The inter-
action between multiple LLM agents is effective at encouraging diversity [35],
factuality, and reasoning capability [16], when compared to a single LLM-based
agent. We suggest that the augmenting these LLM-based agents with RL or OS
algorithms, specifically to maintain the social relationships between the agents,
may result in hierarchies that are similar to those observed in biological life.

When humans work on problems as a group, we balance in-group intrigues
with external pressures to provide good results. We suggest that this interplay
between individual needs and group needs may play a crucial role in the success
of our collective intelligence. We hypothesize that MFM-based agents operating
under similar conditions may make real-world decisions in a way that is more
interpretable and corrigible, as human operators may recognize that the agents’
decision process reflects their own.
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